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Extreme Light Infrastructure
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(Beyond ELI)
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Relativistic Engineering: relativity as the guiding 
tool (cf. quantum engineering)
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3D Particle-In-Cell Simulation

(Bulanov, Esirkepov, Tajima, 2003)
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High energy beam facility 

RCNP䚸JAERI䚸JASRI collaboration

b) laser hutch

a) SPring-8
SR ring

c) experimental hutch

Laser light

8 GeV electron 

Recoil electron

Electron tagging

Collision

Inverse Compton -ray
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New photonuclear processes(?)

(Spring-8)
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Parity Mixing in Nuclei

Interaction between Neutral Current Boson 
and Meson (Nucleon-Nucleon Interaction)

Standard Nucleon-Nucleon Interaction
Z0 : Neutral Current Boson

Interaction between Z0

and Mesons.

The interaction can be determined
by polarized LCS gamma-rays.
Fujiwara, J. Phys. G (2006).



20th Century : began with Einstein, including theory for laser, 
21st Century :laser test and even challenge Einstein.
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Einstein and Ether

(A. Einstein, 1922)
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What beam brings in to nuclear physics

• Rutherford approach
(collider and particle 
beam)

high momentum penetrates 
deep interior of matter and 
scatters, 

sees smallest detail of matter

/a 1 ( ,a are probe and 
target sizes)

• ‘laser’ (and beam) 
approach

photon beam penetrates, but   
not local real space structure,

excites the structure, induces 
dynamics and spectroscopy,

possibly controls
/a ~ 104 ( both for atoms and 
nuclei)

beam revolution of nuclear physics:
similar to laser revolution of atomic physics in’60s
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Additional way preparing for the future in 
Fundamental Physics

• Collider paradigm ( ‘high momentum’ approach)
quantum mechanics E t~ 䉬㻌䍑㻌㻱2

• Non-collider approaches ( ‘high field’ approach)
relativity: the higher the energy, the pronounced the effect

horizon ~ 1/ a  (extradimensions?)
a = g (Einstein’s Equivalence Principle)?
Unruh(a)-Hawking(g) radiation?
special theory (no preferred frame? ; c( )?) 
extreme field physics (merger of research on special  

and general theories of  relativity; Can E also warp    
space; c(|E|2) )

what is vacuum? ( QED, QCD(axion), dark energy,…)

(Gies, Marlund, Di Piazza, Dunne, Schuetshold, Heinzl, Reiss, DeKieviert, Rafelski, 
Zayakin, Smilga, Cohen, Thirolf, Weinfurter, Labun,.. discussed)
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When  can  we  reach  1  PeV  ?:  Suzuki  Challenge

Laser plasma accelerator
experiments

V. Yakimenko (BNL) and R. Ischebeck (SLAC), AAC2006 Summary report of WG4

e-e+ colliders

(Suzuki,2009)



Quantum Gravity: 
“Why is the sky blue?” 

(for extreme high energy gamma rays)
• Amelino-Camelia  et al., Nature (1998)

high energy has dispersion:
= kc + (extra mass-like term?), i.e.  c( )

• May be regarded as scattering off quantum 
fluctuations of vacuum (gravitational origin).  

• Other proposals, such as H. Sato (1972); Coleman-
Glashow(1997), ….

breakdown of Lorentz invariance?
(cosmic rays cease to exist beyond certain energy)

May be testable in PeV energy regimes.



The Crab Pulsar, a city-sized, magnetized neutron star spinning 30 times a second, lies at the center of 
this composite image of the inner region of the well-known Crab Nebula. The spectacular picture combines 
optical data (red) from the Hubble Space Telescope and x-ray images (blue) from the Chandra Observatory, 
also used in the popular Crab Pulsar movies. Like a cosmic dynamo the pulsar powers the x-ray and 
optical emission from the nebula, accelerating charged particles and producing the eerie, glowing x-ray jets. 
Ring-like structures are x-ray emitting regions where the high energy particles slam into the nebular 
material. 

PeV from Crab Nebula

Can we see manifestation of quantum gravity, Lorentz variance in high energy ?
How PeV electrons accelerated?



Special theory of relativity OK?

(Abdo et al, 2009)



-ray signal (GRB) from primordial GRB

Energy-dependent 
Photon mass?

limit is pushed up 
to near Planck mass

PeV (from e-)
Can explore this

(A
bdo, eta l, 2009)
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case I case II case III

a0 10 3.2 1

energy gain GeV 1000 1000 1000

plasma density cm-3 5.7x1016 5.7x1015 5.7x1014

acceleration length m 2.9 29 290

spot radius m 32 100 320

peak power PW 2.2 2.2 2.2

pulse duration ps 0.23 0.74 2.3

laser pulse energy kJ 0.5 1.6 5

Even 1PeV electrons (and s) are possible, albeit with lesser amount
exploration of new physics such as the reach of relativity and quantum gravity

(correlating with primordial gamma-ray burst [GRB] observation)?
(laser energy of 10MJ@plasma density of 1016/cc; maybe reduced with index 5/4)

Meeting Suzuki’s Challenge toward PeV

(when 1D theory applies)
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Parameters Symbol Case I Case II Case III unit

number of stages Nstage 1 100 1000

wavelength 1 1 1 um

norm. laser amplitude a0 56 26 18 

plasma density ne 1.8x1015 3.9x1016 1.8x1017 cm-3

gamma_ph ph 7.9x102 1.7x102 79 

laser energy/stage EL,1 4.1x104 88 4.1 kJ

total laser energy EL,t 4.1x102 8.8 4.1 MJ

total energy gain W 1 1 1 PeV

pump depletion length Lp 1.2x104 57 3.9 m

dephasing length Ld 6.2x103 29 2 m

total acc length Lacc,t 6.2x103 2858.2 1957.8 m

spot radius w0 7.9x102 1.7x102 79 m

pulse duraton 9.8x102 2.1x102 98 fs

peak power P 4.2x104 4.2x102 42 PW

number of electrons Nbeam 1.7E+11 1.7E+10 5.5E+09

A Path toward PeV

(Tajima, Kando, Teshima)



Hawking Radiation (Exploration of Horizon)

What is ‘vacuum’?  Does ‘something’ emerge from ‘nothing’?
žᆰſᲷžᑥſᲹ žฆඇſ žᆃࡀſᲹ

vacuum = ‘matter‘ ? chaos  information ?



Explore relativity with strong fields䠄Unruh radiation䠅

R. Schuetzhold Phys.Rev.Lett.97:121302, 2006

Larmor scatteringUnruh radiation

Correlated
pair radiation

Inertial frame

Rindler frame Strong correlation between
absorption and emission
despite of causal disconnection

G. Unruh PRD 29 1047-1056, 1984

negative frequency
mode in Rinder 2

Observer
in RIndler 1

No correlated pair
in background process

eVTk
mVEcmWI

B 06.0
]/[10]/[10 12217

~10eV (blue shift in lab. frame)

e- e-

(Chen, Tajima,1999)



Strong Acceleration Physics
(Jackson, ch. 17)

Radiation damping: a heap of broken pieces
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• wrong electromagnetic mass (4/3)me occurs in the force equation for a rigid spherical 
electron

• causality is violated; “pre-acceleration” of charged particles before force is turned on

??? All is wrong ???

J.D. Jackson: “Classical Electrodynamics”, ch. 17 (Wiley, New York, 1998)

(D. Habs)



Lorentz force
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Constant B field  =  synchrotron

Circular orbit, sufficient precise, higher order terms are obscured by machine errors

a) Dynamics of electron with feed-back

b) Larmor formula for far-field radiations

(D.Habs)



Lorentz-Abraham-Dirac force
(LAD) 
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Landau-Lifshitz (LL) force
= LAD force + leading order approximation

Derive an effective second order equation, which stays on the critical surface without 
exploding solutions.
Landau-Lifshitz : Regard Lorentz force as leading order

and we insert it into radiation force (replace    )u
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Lower order substitution  = accepted recipe of singular perturbation theory
= Pauli (1929), Heitler (1936)

The new equation does not have the difficulties of LAD,
stable solution, with correct long-time behavior.

But: 4-momentum not collinear with 4-velocity  

(D. Habs)



Landau-Lifshitz (II) 
for 1 electron extremely small radiation damping 
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Basic idea 
Coherent macroparticle 

Assuming N electrons sitting on top of each other, so that they see all fields in phase, 
just like 1 giant electron with mass  Mmac = N·me and charge  Qmac = N·qe .
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N = 1010 for electron sheet, self force becomes dominant and can be studied 
experimentally in detail.

Testing all theories of radiation damping.

(D. Habs)



Na
F
F

L

8

ext

self 10

For a coherent bunch of  N = 1010 the self force is dominant.

If gets larger by Doppler boost, N gets smaller by the same factor.

From LL we have learnt the dominant force

Now we put this         into the             of the LAD equation  higher order LL equation.

i
m

kml
kl uuFuF

cm
eF   

3
2

52

4
(1)

self

(1)
selfF 2

2

d
d

s
ui

... 
d
d ... 

d
d

2

2

s
uF

s
u ii

replace by differentiate each term partiallyi
i

uFuFu
cm

e
s
u   

3
2

d
d

63

4

Thus, the  (Fu)(Fu) occurs with power n and as n

cm
e

63

4

3
2

nn NFFF 8)(
self

(2)
self

(1)
self 10 high harmonics with (2 +3 ·n)

nE
x

E 2kin
kin

d
d

Fast collective deceleration = step function
High harmonics of force result in multiples for far field radiation.

These high harmonics are boosted by (4 2)

Landau-Lifshitz (III) 
N > 108 electrons: dominant radiation damping

(Habs)



Strong coupling ( e·N >> L)  
for classical electrodynamics (I) 

Lorentz-Abraham-Dirac: acceleration

,  runaway solution
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Electron sheet break-out
from thin solid foil; Theory (I)

V. Kulagin et al., PRL 99 (2007) 124801
B. Rau et al., PRL 78 (1997) 3310

Break-out condition
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B. King, A. Di Piazza and C. H. Keitel, Nature Photon. 4, 92 (2010)

Nonlinear Optics in Vacuum

What is vacuum?
Can vacuum be nonlinear?
Is c constant?
What contribute to nonlinear vacuum?
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An observer in a crystal as vacuum Phonon is an excitation of vacuum Strong field breaks vacuum

َ౦໌ช૬ُ َ૬໌ช౦ُ

૬ُكઌقَ Photon is a distortion of vacuum e+e- pair production out of 
vacuum
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Detection of (light) fields-particles missed by   
collider: exploring new fields such as 

axion……

A.Chou et al.,PRL (2008) observed no signal so far (Note:claim of axion by PVLAS was withdrawn) 

co
up

lin
g

mass



B. King et al., Nature Photon. 4, 92(2010)

High amplitude photon-photon interaction
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Homma proposes: experimental test

22
04 Rn
eET

Rt

n
Rt

n
cl

e-

Measure instantaneous variation of refractive index
in Electro-Optical crystal by external electric fields.

e-

z

z

x
y y

x

Rx

))5.0(tan(cos 3/11Ry

TEO Erfn )(

R
e

n
rfln EO

3
02

)(2

R

Phase retardation

(Homma, 2007)



High Field Science 
and other (telescope, collider) approaches
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(K.Homma)



High Field Science from an ELI Workshop talk

(H. Gies discussed
at Extreme Light Infrastructure (ELI)
Meeting, 2008)



Relativity Helps Acceleration (for 
Ions, too!)

In relativistic regime,
photon x electrons
and even protons
couple stronger.

(Tajima, 1999 
@LLNL; 
Esirkepov et al.,
PRL,2004)

Strong fields:
rectifies laser
to longitudinal 
fields



Beyond laser intensity 1024W/cm2 ions move 
relativistically like e-

Relativistic and monoenergetic ion beam may constitute
compact colliders of ions

QCD vacuum exploration

(Bulanov et al, 2004)
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• Broadened and maybe double 
humped structure on the away-
side in 2-particle correlations.

• Could be caused by:
– Large angle gluon radiation (Vitev and 

Polsa and Salgado).

– Deflected jets, due to flow (Armesto, 
Salgado and Wiedemann) and/or path 
length dependent energy loss (Chiu 
and Hwa).

– Hydrodynamic conical flow from 
mach cone shock-waves (Stoecker, 
Casalderrey-Solanda, Shuryak and Teaney, Renk, 
Ruppert and Muller).

– Cerenkov gluon radiation (Dremin, 
Koch).

• Three-particle correlations to 
distinguish them.

Medium
away

near

Deflected Jets
away

near

Medium

Conical Emission

Nuclear wakefields
PHENIX PRL 97, 052301 (2006)

PHENIX

2.5<pT
Trigger<4 GeV/c

1<pT
Assoc<2.5 GeV/c

3<pT
Trigger<4 GeV/c

1<pT
Assoc<2.5 GeV/c

0-12%
Au+Au 0-5%

Horner (STAR) QM2006

J. Ulery (2007)
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PHENIX Results: Nuclear Wake

• 3-particle/2-particle ~ 1/3, very large
– Residual background?

v2 subtracted     Au+Au 10-20%

v2 and 2-particle  subtracted

* Projections

v2 subtracted

2-particle dominated2-particle dominated

Mach-cone

Deflected

• Shape consistent with simulated mach-cone.

PRL 97, 052301 (2006)

PHENIX

Ajitanand (PHENIX) HP06, IWCF’06
J. Ulery (2007)
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Conclusions
• Collective acceleration driven by intense laser: leap by 

many orders ( GeV electrons; 10 GeV soon; 100GeV 
considered; TeV laser collider contemplated; PeV possible?

• High momentum approach (Rutherford approach) vs high 
amplitude approach (laser approach): high field physics’s new 
paradigm

• Test of Einstein’s relativity (special and general theories), 
nonlinear QED (and QCD) (Schwinger physics), high 
acceleration (=gravitational) physics (horizon physics), test of 
equivalence principle,  radiation dominant regime (physics of 
large acceleration/gravitation), quantum gravity

• Can we detect vacuum fields that permeate vacuum (such as 
dark energy)?  What is vacuum?  How to enhance the signal 
(forward scattering approach)?  nonlinear optics in vacuum
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Pascal Lecture Plan
(tentative, need your feedback)

• Oct.22: First Lecture (General) “ Laser 
Acceleration and High Field Science: 1979-
2009”

• Nov.18: Second Lecture “Laser Electron 
Acceleration and its Future”

• Dec.9: Third Lecture “Laser Ion Acceleration”
• January 20,2010: “Relativistic Engineering”
• March 10: “Photonuclear Physics”
• April 14: “High Field Science”
• May 19: “Medical Applications”
• ……

Merci Beaucoup 
et a la Prochaine Fois!


